Increasing mammalian cardiomyocyte contractility with residues identified in trout troponin C.

نویسندگان

  • Todd E Gillis
  • Bo Liang
  • Franca Chung
  • Glen F Tibbits
چکیده

The Ca2+ sensitivity of force generation in trout cardiac myocytes is significantly greater than that from mammalian hearts. One mechanism that we have suggested to be responsible, at least in part, for this high Ca2+ sensitivity is the isoform of cardiac troponin C (cTnC) found in trout hearts (ScTnC), which has greater than twice the Ca2+ affinity of mammalian cTnC (McTnC). Here, through a series of mutations, the residues in ScTnC responsible for its high Ca2+ affinity have been identified as being Asn2, Ile28, Gln29, and Asp30. When these residues in McTnC were mutated to the trout-equivalent amino acid, the Ca2+ affinity of the molecule, determined by monitoring the fluorescence of a Trp inserted for a Phe at residue 27, is comparable to that of ScTnC. To determine how a McTnC mutant containing Asn2, Ile28, Gln29, and Asp30 (NIQD McTnC) affects the Ca2+ sensitivity of force generation, endogenous cTnC in single, chemically skinned rabbit cardiomyocytes was replaced with either wild-type McTnC or NIQD McTnC. Our results demonstrate that the cardiomyocytes containing NIQD McTnC were approximately twice as sensitive to Ca2+, illustrating that a McTnC mutant with similar Ca2+ affinity as ScTnC can be used to sensitize mammalian cardiac myocytes to Ca2+.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Todd E . Gillis , Chris D . Moyes and Glen F . Tibbits are permissive of high Ca 2 + affinity of site II Sequence mutations in teleost cardiac troponin

[PDF] [Full Text] [Abstract] , June 16, 2005; 22 (1): 1-7. Physiol Genomics T. E. Gillis, B. Liang, F. Chung and G. F. Tibbits troponin C Increasing mammalian cardiomyocyte contractility with residues identified in trout [PDF] [Full Text] [Abstract] , August 15, 2007; 583 (1): 337-350. J. Physiol. K. L. Kreutziger, T. E. Gillis, J. P. Davis, S. B. Tikunova and M. Regnier activation in rabbi...

متن کامل

The influence of trout cardiac troponin I and PKA phosphorylation on the Ca2+ affinity of the cardiac troponin complex.

The trout heart is 10-fold more sensitive to Ca(2+) than the mammalian heart. This difference is due, in part, to cardiac troponin C (cTnC) from trout having a greater Ca(2+) affinity than human cTnC. To determine what other proteins are involved, we cloned cardiac troponin I (cTnI) from the trout heart and determined how it alters the Ca(2+) affinity of a cTn complex containing all mammalian c...

متن کامل

Beating the cold: the functional evolution of troponin C in teleost fish.

The sensitivity of the cardiac myocyte contractile element for Ca(2+) decreases with temperature. As myocyte contractility is regulated by changes in cytosolic [Ca(2+)], this desensitizing effect represents a challenge for temperate fish such as the rainbow trout, Oncorhynchus mykiss, living in environments where temperatures are low and variable. To allow cardiac function in a temperate enviro...

متن کامل

A functional comparison of cardiac troponin C from representatives of three vertebrate taxa: Linking phylogeny and protein function.

The Ca2+ affinity of cardiac troponin C (cTnC) from rainbow trout is significantly greater than that of cTnC from mammalian species. This high affinity is thought to enable cardiac function in trout at low physiological temperatures and is due to residues Asn2, Ile28, Gln29, and Asp30 (Gillis et al., 2005, Physiol Genomics, 22, 1-7). Interestingly, the cTnC of the African clawed frog Xenopus la...

متن کامل

Cold acclimation increases cardiac myofilament function and ventricular pressure generation in trout.

Reducing temperature below the optimum of most vertebrate hearts impairs contractility and reduces organ function. However, a number of fish species, including the rainbow trout, can seasonally acclimate to low temperature. Such ability requires modification of physiological systems to compensate for the thermodynamic effects of temperature on biological processes. The current study tested the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physiological genomics

دوره 22 1  شماره 

صفحات  -

تاریخ انتشار 2005